
Nano? Pico? Femto? Atto?

Zepto!
@thomasfuchs

(cc) 2011 Thomas Fuchs

“real” computer

Fast and stable network connection

Lots of storage

Fast, multi-core CPUs

Hardware-accelerated graphics

Slow & unstable network connection

Limited storage

Slow CPUs

Hardware acceleration only on iOS

All major JS libs
where created

before phones had
web browsers to

write home about.

Don’t use something
because it’s popular.

Use stuff because it’s the
right tool for the job.

WebKit

Proprietary features

Adoption of features
from JavaScript

frameworks

Proprietary features
are awesome

CSS Selectors

document.querySelectorAll('div.awesome > p')

full featured
CSS3 selectors

// select all li elements with both "just" and "testing"
classnames
document.querySelectorAll('li.just.testing')

// how many paragraphs?
document.querySelectorAll('p').length

// select even paragraphs
document.querySelectorAll('p:nth-child(2n+1)')

document.querySelectorAll
returns a NodeList, not an array

[].slice.apply(nodelist)

convert to
JavaScript array

querySelectorAll

Fast, native implementation

Returns a NodeList, not an array

Full-featured CSS selectors

No need for external JavaScript libraries

JSON

JSON.stringify({
 s: 'a string',
 n: 123,
 d: new Date
})

JSON.parse('{"some":"json","test":123}')

Native JSON

Fast, native implementation

Parsing JSON (convert to JS object)

Serializing JS objects to JSON

No problem with security of “eval” as in
some JavaScript-based
implementations

Array iteration

[1,2,3].forEach(alert);

[1,2,3].forEach(alert);

array with three numbers

[1,2,3].forEach(alert);

forEach is a native function on
arrays, taking a function argument

[1,2,3].forEach(alert);

call with window.alert
function

[1,2,3].forEach(alert);

Iterate through all elements found,
alerting the element’s contents

[].slice.apply(nodelist).forEach(
 function(element){
 alert(element.innerHTML);
 }
);

Array Iteration

No more for loops required

Array Iteration

No more for loops required

Array Iteration

No more for loops required

No more for loops required

Array Iteration

No more for loops required

No more for loops required

No more for loops required

Array Iteration

No more for loops required

No more for loops required

No more for loops required

No more for loops required

Array Iteration

No more for loops required

No more for loops required

No more for loops required

No more for loops required

Mobile JavaScript
framework?

Why not use
Prototype, jQuery or
other frameworks?

Some functionality is not
supported or not meaningful

on mobile devices.

resizing & scrolling
orientation
fixed positioning
fonts
SVG

More code causes longer download
and initialization times.

Most of the downloaded code
isn’t even used.

(there’s no IE 6 to support on
mobile phones, lucky us)

A lot of the rest of the code is
duplicating features that are
directly available as native

implementations.

Goals for a mobile
JavaScript framework

Reduce code size as much as
possible to keep download and

initialization times down.

Easy to use API—possibly
emulating jQuery because

developers already know it.

Easy to extend and customize—
again, jQuery has a familiar plugin/

extension mechanism

Ideally, have a fallback mechanism
in case it’s run on non-WebKit

mobile browsers.

It’s not so important
what’s there, but
what’s not there.

Meet zepto.js
http://github.com/madrobby/zepto

Target size: 5K

jQuery-compatible API

Uses mobile WebKit features whenever possible

Easily replaceable with jQuery proper if needed

Doesn’t cover all of jQuery (but lots of it!)

http://github.com/madrobby/zepto
http://github.com/madrobby/zepto

31.33K

4.83K

jQuery 1.6 Zepto (master)

Various special cases

Main use case $(some selector)

this saves ~6k of selector engine code

make sure dom is a JavaScript array

swap out the
prototype,

but leave “length”
and other properties

intact, uses the
proprietary

__proto__ property

Z.prototype is pointing to $.fn which holds all
methods that are used on found elements

Reusing array methods, works because
we have an array-like object

this is an array-like of resulting nodes
and a Zepto object at the same time

insertAdjacentElement is IE-
proprietary, but supported by WebKit

(doesn’t work on Firefox!)

Zepto.js
http://github.com/madrobby/zepto

CSS Selectors and DOM manipulation

Ajax including x-domain JSONP

Events (including touch events)

Polyfills and bug fixes for older WebKits

Modular (can leave out events, xhr, etc.)

WebKit only! (with focus on mobile)

http://github.com/madrobby/zepto
http://github.com/madrobby/zepto

/

m.checkers.com

One more thing…

scriptaculous

Prototype.js

jQuery

mootools

you/users are the rebels
—the ewoks are helping
you achieve your goals

Micro-Frameworks

Classic frameworks

25k+ minified & gzipped

Do all things and do it ok-ish

Many extensions are now available
in the DOM or JavaScript

Force you into an API

Not modular/not modular enough

Micro-Frameworks
(are awesome!)

do one thing and do it really well

smaller than 5k, minified & gzipped

use directly or loosely coupled

Small is beautiful

downloads and runs faster

easier to understand code & fork

fewer bugs (less code!)

…and you’ll learn how
JavaScript REALLY works

{{ mustache }} ~ 1.5k

Lawnchair ~ 2.0k

Backbone.js ~ 3.9k

But how do I know
what’s out there?

microjs.com

github.com/madrobby/
microjs.com

Add your own!

Questions?
@thomasfuchs

